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Various IR issues 
IR divergence coming from k-integral  
Secular growth in time ∝(HT)n 

Adiabatic perturbation, 
     which can be locally absorbed by the choice of time slicing.  

Background trajectory	
isocurvature 
perturbation 

adiabatic 
perturbation 

Isocurvature perturbation 
    ≈ field theory on a fixed curved background 
Tensor perturbation 
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Factor coming from this loop: 	


 scale invariant spectrum 	


31 k∝
curvature perturbation in 

co-moving gauge.	
  - no typical mass scale 	
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u  In conventional cosmological perturbation theory, 
gauge is not completely fixed.	


Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209	


Time slicing can be uniquely specified: δφ =0    OK!	


but spatial coordinates are not.	
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Residual gauge d.o.f.	


Elliptic-type differential      
  equation for ξ i. 	


Not unique locally!	


u  To solve the equation for ξ i, by 
imposing boundary conditions at 
infinity, we need information about 
un-observable region. 

=Δ iξ

observable 
region	
 time 

direction	




u  The local spatial average of ζ can be set to 0 identically  
by an appropriate gauge choice. 

u  Even if we choose such a local gauge, the evolution 
equation for ζ  formally does not change, and it is 
hyperbolic. So only the interaction vertices inside the 
past light cone are relevant.  

u  Therefore, IR effect is completely suppressed as long as 
we compute ζ  in this local gauge. 	


However, we later noticed that the above argument is true 
only when correlation functions of ζ are free from 
divergence at the initial time, which is not in general 
guaranteed. 	




u  If we evaluate genuine gauge-invariant quantities, we 
should obtain finite results whatever gauge we may use.  

Correlation functions for 3-d scalar curvature on φ =constant slice. 	

〈R(x1) R(x2)〉 	


But coordinate values do not have gauge invariant meaning.	


x	
 origin	


 x(XA, λ=1) =XA + δ xA	

x	


Specify the position by solving geodesic Eq.	
 022 =λdxD i

ii XdDx =
=0λ

λ with initial condition                            . 	


XA	


gR(XA) := R(x(XA, λ=1)) = R(XA) +δ xA∇ R(XA) + …	


〈gR(X1) gR(X2)〉 should be genuine gauge invariant.	

Translation invariance of the vacuum state takes 
care of the ambiguity in the choice of the origin.	


(Giddings & Sloth 1005.1056)	

(Byrnes et al. 1005.33307)	


A  genuine gauge-invariant quantity:	


Then, use X i to specify the position.	




u  No interaction term in the evolution equation at O(ε0) in flat gauge.	

◎R(XA) ~ e-2ζ Δζ	


〈gR(X1) gR(X2)〉	
∝  〈ζΙ 2〉 ∫d(logk)k3[Δ(D2uk(X1))Δ(u*
k
 (X2)) + 2Δ(Duk(X1))Δ(Du*

k
 (X2))  

                   +Δ(uk(X1))Δ(D2u*
k
 (X2))] + c.c.  

           + (manifestly finite pieces) 

ζΙ  = uk ak + u*
k a†

k	
D := ∂loga - (x ⋅∇ )	


uk =k-3/2(1-ik/aH)eik/aH	


 where	


◎flat gauge → δφ = 0 gauge	


u  IR divergence from 〈ζΙ 2〉 exists in general.	


However, the integral vanishes for the Bunch-Davies vacuum state. 	

Duk =k-3/2 ∂logk (k3/2uk) 	


Then	

〈gR(X1) gR(X2)〉(4)∝ 〈ζΙ 2〉×∫d(logk) ∂logk [Δ(k3/2uk(X1))Δ(k3/2u*

k
 (X2)) ] + c.c.  
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u  To remove IR divergence, the positive frequency function corresponding 
to the vacuum state is required to satisfy D　uk =k-3/2 ∂log　k (k3/2uk) .	


◎R → gR	




3) Computation that assumes adiabatic vacuum (e.g. Giddings and Sloth) 
finds no IR divergence. This means that our generalized condition of scale 
invariance should be compatible with the adiabatic vacuum choice. 	


1) To avoid IR divergence, the initial quantum state must be “scale 
invariant/Bunch Davies” in the slow roll limit.  

2) To the second order of slow roll, a generalized condition of “scale 
invariance” to avoid IR divergence was obtained, and found to be 
consistent with the EOM and normalization. 

“Wave function must be homogeneous in the residual gauge direction”	




This derivation already indicates that the leading term in the 
squeezed limit given by the consistency relation vanishes 
once we consider “genuine gauge invariant quantities”. 	


Super-horizon long wavelength mode k1 should be irrelevant for the short 
wavelength modes k2, k3 . 

In the squeezed limit, 3pt fn is given by	
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The only possible effect of k1 mode is that  
it modifies the proper wave numbers corresponding to k2, k3 . 

 , neglecting tensor modes 	
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 Let’s consider ζ in geodesic normal coordinates X~eζk1x 	


 ∵ gζk2 and 
gζk3 are not correlated with ζk1.	


<ζk1 
gζk2 

gζk3> ≈ 0 	




even if we include the above corrections to 
the relation between, x and X,  
<ζk1 

gζk2 
gζk3> ≈ 0 holds in the squeezed limit. 	


 size of our observable universe 

In the squeezed limit, 3pt fn vanishes,	


 (1) for k1 << (aL)-1
 << k2, k3 	


In the case (1), Fourier mode with such small k1 cannot be resolved! 

For extension to the case (2), we have to solve the geodesic equation: 	
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 (2) for (aL)-1 << k1 << k2, k3 	
or	


But approximate expression for geodesic normal coordinates 

Although it’s too technical to explain it here, 	


?	

<ζk1 

gζk2 
gζk3> ≈ 0 	


X ~ eζk1 x is valid only for the case (1). 	




u  In the squeezed limit bispectrum is known to be given 
by the power spectrum and spectral index. 

u  But this applies for the usual ζ, which is not a genuine 
gauge invariant variable. 

u  Leading term given by the consistency relation 
disappears if we use a genuine gauge invariant 
quantity. 

u  We suspect that a similar thing may happen for the 
temperature perturbation in CMB, which should be a 
genuine gauge invariant quantity. 

u  Remark: this argument applies only for local-type non-
Gaussianity originating from initial adiabatic 
perturbation, though. 	





